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Conditional Lagrangian acceleration statistics in turbulent flows
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The random intensity of noise approach to the one-dimensional Laval-Dubrulle-Nazarenko-type model
having deductive support from the three-dimensional Navier-Stokes equation is used to describe Lagrangian
acceleration statistics of a fluid particle in developed turbulent flows. Intensity of additive noise and cross
correlation between multiplicative and additive noises entering a nonlinear Langevin equation are assumed to
depend on random velocity fluctuations in an exponential way. We use an exact analytic result for the accel-
eration probability density function obtained as a stationary solution of the associated Fokker-Planck equation.
We give a complete quantitative description of the available experimental data on conditional and uncondi-
tional acceleration statistics within the framework of a single model with a single set of fit parameters. The
acceleration distribution and variance conditioned on Lagrangian velocity fluctuations and the marginal distri-
bution calculated by using independent Gaussian velocity statistics are found to be in a good agreement with
the recent high-Reynolds-number Lagrangian experimental data. The fitted conditional mean acceleration is
very small, that is, in agreement with direct numerical simulations, and increases for higher velocities but it
departs from the experimental data, which exhibit anisotropy of the studied flow.
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I. INTRODUCTION subrange where turbulent fluctuations are smoothed. Such

. . . . models are generally based upon a hierarchy of characteristic
Data analysis and modeling of statistical properties of &ime scales in the system and naturally employ a one-point

Lagra_mglan particle ad.vect.ed by a fully developed turbUIer‘gtatistical description using a Langevin type equation, or the
flow is of much practical interest and complements tradi-55qqciated Fokker-Planck equation for a one-point probabil-
tional studies made in the Eulerian framework. The strongy, gensity function of the variable. Noises entering the
and nonlocal character of Lagrangian particle coupling dug angevin type equation are treated along a fluid particle tra-
to pressure effects makes the main obstacle to derive turb'jbctory, and the Fokker-P|anck approximation makes connec-
|ence StatiStiCS from the NaVier'StOkeS equation. Recerﬁon between the dynamics and statistical approach_
breakthrough Lagrangian experimeiits-3] have motivated Recently we have showfi3,16-18 that the 1D Laval-
growing interest to a single-particle statistics. Some phenompyprulle-NazarenkgLDN) toy model[19,20 of the accel-
enological approachgd, )] inspired by the nonextensive sta- eration evolution with the model turbulent viscosity and
tistics formalism were use] to describe Lagrangian accel- coupled s-correlated Gaussian multiplicative and additive
eration of a f|UId partiC|e in a Stationary developed turbulentnoises is in a good agreement with the high_precision La-
flow within the framework of a Langevin type equation; seegrangian experimental data on acceleration stati§fies);
also Refs[7-9]. the Taylor microscale Reynolds numb@g=690, the mea-
Some toy mOde|S Of deve|0ped turbulence Suﬂ:er fl’0m th%ured norma"zed acce'eration range is 5@)’<a2>1/2$ 60,
lack of justification of a fit from turbulence dynami€$4],  and the resolution is 1/65 of the Kolmogorov length scale of

and the connection between specific nonthermodynamicge flow. The long-standing Heisenberg-Yaglom scaling of a
processes and nonextensive mechanisms was argued to &?mponent of Lagrangian acceleration, (a®)

generally not well defined15]. Recent one-dimensional 192,112 -312 \yas confirmed experimentalfg] to a very

X : L =agu
(1D) stochastic particle models and their refinem¢hes-12 hizoh accuracy, for about seven orders of magnitude in the
were reviewed in Ref[13], in which the importance of !

Navier-Stok tion based hes i hasized acceleration variance, or two orders of the root mean square
a;:er(—j 0 ffsl e%ua lon base e(ljpprolac ?ft's ;Tp taleze - velocity u, at R, >500; a, is the Kolmogorov constani; is
uid particie dynamics in a developed turbulent Tow 1S yo yjnematic viscosity, and. is the Lagrangian integral
described in terms of a generalized Brownian motion with

the L . lerati f an individual particle vi length scale. Long-time correlations and the occurrence of
€ Lagrangian acceieration ot an individual particie viewe ery large fluctuations at small scales dominate the motion of

2 ; . . . >3 fluid particle, and this leads to a new dynamical picture of
tion is associated with the Lagrangian velocity increment 'nturbulence[21 22

time for sufficiently small time scales, in a far dissipative The original 3D and 1D LDN models were formulated

both in the Lagrangian and Eulerian frameworks for small-
scale velocity increments in time and space, respectively.
*Also at Department of Mechanics and Mathematics, KazakhstaThey are based on the Gabor transformatiaurier trans-
Division, Moscow State University, Moscow 119899, Russia. Elec-form in windowg and a stochastic kind of Batchelor-
tronic address: aringazin@mail.kz Proudman rapid distortion theoiRDT) approach to the in-
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compressible 3D Navier-Stokes equat[d®], and thus have At dissipative time scale the obtained PDF fits the experi-
a deductive support from turbulence dynamics. A studymental data on Lagrangian acceleration to a good accuracy.
based on direct numerical simulatio@®NS’s) of the 3D  The cumulant analysis made in this approach provides an
LDN model in the regime of decaying turbulence has beerunderstanding of the observed departures from the scaling
made. when going from the integral to dissipative timescale. The
The random intensity of noiséRIN) approach[13,1G used parabolic singularity spectrunth) is a hallmark of the
provides an extension of the 1D LDN model viewed in thelog-normal (Kolmogorov, 1962 statistics and reproduces
limit of small time-scaler for which Lagrangian velocity well the left-hand sidg¢corresponding to intense velocity in-
increments are proportional to u(t+7)—u(t)=ra(t). crementy of the observed curve which is centered at
The main idea of the RIN approach is simply to account0.58>1/2) but increasingly deviates at the right-hand side
for the recently established two well separated Lagrangianf it (corresponding to weak velocity incrementAnother
autocorrelation time scales for the velocity incremedi2s widely used statistics, the log-Poisson one, was shown to
and assume that certain model parameters, such as intensigpart from Lagrangian observations in the same manner.
of noise and fluctuate drge time scale. The conditional acceleration statistics was not considered in
An analysis of such a simple 1D model can shed somehis work.
light to properties of the 3D LDN model of Lagrangian dy- In a recent paper A. Reynold®5] developed a self-
namics. Recent development of the 3D LDN model can beonsistent second-order stochastic model with additive noise
found in Ref.[23], in which some interesting methods of which accounts for dependence of the Lagrangian accelera-
turbulent dynamo problem have been exploited. tion covariance matrix on Lagrangian velocitiesThe ob-
The experimental data on the axial component of La-served dependence of the conditional acceleration variance
grangian acceleratioa of polystyrene tracer particle in the (a?|u) onu [3] was partially understood in terms of Lagrang-
R\=690 water flow generated between counter-rotating diskfan accelerations induced by vortex tubes within which the

have been fitted by the stretched exponerjtiai3], vorticity is constant and outside which the vorticity vanishes.
) Scaling relations were invoked to derive a third-order poly-
P(a)=C exp{— a—] _ (1) nomial structure of the isotropic covariance matrix as a func-

1+ |b1a/b2|b3)b§ tion of squared velocity? [26]. The inclusion of such con-

ditional acceleration covariances in the model resulted in
Here, b,=0.513+0.003, b,=0.563+0.02, and Dbs  requction of the predicted occurrence of small accelerations
=1.600+0.003 are fit parameters, a@et0.733 is a normal-  {hat meets experimental and DNS data for unconditional dis-
ization constant. The studied flow is highly anisotropic atyipytions. The cores of the resulting conditional acceleration

large scales and this appears to affect small scales, resultingstributions were found to broaden with increasingin a
in a small skewness of the acceleration distribution and obgygjitative agreement with the experiment.

servable distinction in the distributions of different compo- * gawford et al. [26] have studied acceleration statistics
nents of the velocity. At large acceleration values, tails of therom |aboratory measurements and direct numerical simula-
distribution(1) decay asymptotically as eikgal®] that im-  tjons in 3D turbulence aR, ranging from 38 to 1000. For
plies a convergence of the fourth-order mome@)  |arge|u|, the conditional acceleration covariance behaves like
=7, a*P(a)da, as confirmed by the experiment with mea- ué. This is qualitatively consistent with the stretched expo-
sured normalized acceleration values upato=60. The flat-  nential tails of the unconditional acceleration PDF. The con-
ness factor of the distributiofl) which characterizes widen- ditional mean rate of change of the acceleration derived from
ing of its tails (when compared to a Gaussjais F the data has been shown consistent with the drift term in
=(a%/(a%?=55.1, that is in agreement the experimentalsecond-order Lagrangian stochastic models of turbulent
value F=55+8. The Kolmogorov time of the flow is,  transport. The correlation between the square of the accelera-
=0.93 ms. Low-pass filtering with the 0.23width of the  tion and the square of the velocity has been shown small but
collected 1.7 10° data points was used, and the responseot negligible.
time of the optically tracked 4@m tracer particle is 0.1z, In very recent papers Biferalet al. [27,28 have pre-
Recently, Chevillarcet al. [22] have constructed an ap- sented interesting results of DNS of Lagrangian transport in
propriately recasted multifractal approach to describe statisiomogeneous and isotropic turbulence wW&hup to 280, a
tics of Lagrangian velocity increments in a wide range ofvery accurate resolution of dissipative scales, and an integra-
time scales, from the integral to dissipative one. The resulttion time of about Lagrangian time scale. They have shown
ing theoretical distribution reproduces continuous wideninghow the multifractal formalism offers an alternative ap-
of the velocity increment probability density functigRDF) proach which is rooted in the phenomenology of turbulence.
with the decrease of time scale, from a Gaussian-shaped fthe Lagrangian statistics was derived from the Eulerian sta-
the stretched exponential as observed in Lagrangian expetiistics without introducingad hochypotheses. Although the
ments carried out at Cornglll-3] and ENS-Lyon[21,24, formalism is not capable to account for small acceleration
and DNS of the 3D Navier-Stokes equation. Two global pavalues(typical situation for the multifractal approagchhe
rameters(Reynolds number and Lagrangian integral timeobtained acceleration PDF captures the DNS data well in the
scalg and two local paramete(mtermittency parameter and tails, with normalized acceleration values ranging from about
smoothing parametewith a parabolic singularity spectrum |a|/(a?*?=1 up tol|a|/(a®?=80. Alas, one can observe an
were used to cover the data in the entire range of time scalegverestimation in this range which can be clearly seen from
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the predicted contribution to the fourth-order moment, II. 1D LAVAL-DUBRULLE-NAZARENKO MODEL
a*P(a), as compared to the DNS data. The high degree of OF SMALL-SCALE TURBULENCE

isotropy of the simulated stationary flow suggests equiva- |n this section, we present only a brief sketch of the 1D
lence of Cartesian components of acceleration aligned tppN model and refer the reader to Refd3,19 for more
fixed directions, and the resulting DNS distribution obtainedgetails: see also Re23]. This toy model can also be viewed
by averaging over the components has been found with ngg g passive scalar in a compressible 1D flow.
observable asymmetry with respectte- —a. The multifrac- The main assumption of the LDN approach to the 3D
tal approach has been also uged] to obtain acceleration Nayier-Stokes turbulence is to introduce and separate large-
moments conditional on the velocity. Particularly, the multi- gc51e and small-scale parts in the 3D Navier-Stokes equation
fractal prediction(a’|u)~u**" agrees well with the DNS by ysing the Gabor transformatiqag]. This allows us to
data for large velocity magnitudes. The predicted exponengonsider analytically small-scale turbulence coupled to large-
4.57 differs from the value 6 predicted recently by Sawfordscale termgthe interscale coupling The approach allows
et al. [26] and is very close to the Heisenberg-Yaglom scal-one to account for nonlocal interactions which were argued
ing exponent value 9/2. This indicates that the averaging ofo be important in understanding intermittency in developed
the above conditional acceleration variant@|u) over  turbulent flows. The other, large-scale, part of the equation
Gaussian distributed velocity is consistent with the can be treated separatglgnd, in principle, solved numeri-
Heisenberg-Yaglom scaling lafjgee remark and E@68) of  cally given the forcing and boundary conditigrsnce the
Ref. [13]]. forcing is characterized by presumably narrow range of small
In the present paper, we focus on the 1D LDN type dy-wave numbers, and the small scales make little effect on it.
namical modeling of the Lagrangian acceleratimmditional ~ Small-scale interactions are modeled by a turbulent viscosity
on velocity fluctuationspresented recently by Mordant, and were shown numerically to make a small contribution to
Crawford, and Bodenschatz in the experimental W@k In  the anomalous scalingntermittency in the decaying turbu-
contrast to our previous studies of the conditional acceleralence. Nevertheless, these are important when fitting model
tion statistics[13,16-18, here we give a self-consistent distribution to the experimental data. The 3D LDN model of
treatment of the model by explicit accounting for a Gaussiarsmall scale turbulence was used to formulate a simplified 1D
distribution of Lagrangian velocity fluctuations that is ob- LDN model, which was studied both in the Eulerian and
served experimentally. We give a complete quantitative detagrangian frame§19].
scription of the available experimental data lwoth the con- We use probability density function obtained as a station-
ditional and unconditional acceleration statistics within theary solution of the Fokker-Planck equation that corresponds
framework of a single model with a single set of fit param-to a consideration of statistically stationary state; statistical
eters. The importance of the present approach is that thgomogeneity and isotropy of the 3D flow is assumed as well.
Lagrangian single-particle modeling is dynamical and has ahis equation is derived from the Langevin equation for a
deductive support from the Navier-Stokes equation, with fewcomponent of Lagrangian acceleratiaft) [13,19,

assumptions justified by the turbulence phenomenology be- Ja

ing used. This approach adds a different look to homoge- —=(¢-vkda+o,, 2)
neous isotropic turbulence modeling which is alternative to at
those given by the recent multifractal aad hocLangevin T

stochastic approaches where 1= \v3+B%?/k? is the turbulent viscosity modeling
It should Ft))% empha-sized that the Lagrangian velocity issmall-scale interactiongy is constant kinematic viscositi

known to follow Gaussian distribution to a very good accu-> free parameter measuring the corjtr|but|on of nonlinearity

racy while the Lagrangian acceleration follows highly non-r_ak1 gtokzg)e:ijorbtﬂe:qgggc?ﬁéwhSgﬁs't? e\'?frlm\i/r? nSfTe ?:fri[:;kthe

Gaussian distribution which is related to extremely intermit-cfne éimensior’1al case 9

tent character of the acceleration, with pronounced central’ ", - X .

peak and relatively frequent acceleration bursts up to 80 In the original 3D LDN model based on the Navier-Stokes

standard deviations. We note that, theoretically, time deriva?quat'on’g(t) Is related to the velocily derivative tensor and

tive of a dynamical variable does not necessarily follow theol(t) describes a forcing of small scales by large scales via

same statistical distribution as that of the variable. the energy cascade mechanigmonlocal interscale cou-
Our consideration is restricted to a stationary one-poinP!iN9)- In the 1D LDN model, these are approximated by a

distribution function. Two-point statistical analysis is of sufficiently simple statistics ins_pired by the Kraichna_n en-
much interested and can be made elsewhere. semble used for turbulent passive scalar and the Kraichnan-

The paper is organized as follows. In Sec. Il we give alikazantsev model of turbulent dynamo: external Gaussian

brief description of the 1D LDN model and present the re-White-in-time noises along a fluid particle trajectory,
sulting acceleration distribution, which we treat as a condi- (E1))=0, (&b)&t)y=2Dst-t"), (o, (1))=0,
tional one by assigning stochastic properties to certain pa-

rameters. In Sec. lll we briefly review results of our previous (g (t)o, (t')) = 2ad(t—t'), (&t)o, (t'))=2A8(t—t').
work and make sample fits of the obtained conditional and 3)
unconditional acceleration distributions and moments to the
experimental data. In Sec. IV we discuss the obtained resultdere,D, «, and\ are free parameters measuring intensity of
and make conclusions. the noises and their cross correlation, respectively. Bigger
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and a means bigger contribution of the velocity derivative c=-iVDa-\2, (6)
tensor and the interscale couplifpth viewed here as short-
time autocorrelated processés the small-scale dynamics. c, = B2(4\3 + 4c\2 - 3Dah - cDa) + DA(c +\) ngz, 7)

The model(3) imposes an obvious limitation but is par-
tially justified by DNS in the laboratory frame of reference =y~ >3
[19]. The averaging is made over ensemble realizations. Zero C2= VBY(2\"+ 2cA - Da)k® + D7wk". (8)

means correspond to isotropy of the forces. Physically, thehe distribution(4) is characterized by the presence of ex-
small scales are thus assumed to be stochastically distort%nemiw cut off, complicated power-law dependence, and
by much larger scales. We stress that a correlation betweqgrms responsible for a skewngasymmetry with respect to
the noisest and o, is notad hocassumption but a conse- 3, -g).

quence of their structure as they contain the same large-scale one way when comparing the model with the experiment
velocity serving as a unifying agent between the noises. s to make a direct fit of the obtained PD#) to the experi-

It should be emphasized that the 1D LDN toy model andmental data on unconditional acceleration distribution by as-
its particular cas¢2) have several limitations related to the syming all the parameters and wave number to be constant.
LDN separation of small and large scales allowing to study particularly, this implies a reduction of the original 1D
exclusively nonlocal effects associated to the linear processpN model since the wave number is taken to be fixed so
of distortions of small scales by a strain produced by largehat the artificial 1D compressibility aimed to model the
scales, the use of model turbulent viscosity, and one dimenrDT stretching effect in the 1D case is not considered. We
sionality. note that the Lagrangian acceleration is usually associated to

In the Lagrangian frame the wave numiés replaced in  the dissipative scale, and in the present paper we do not
terms of the initial valudk,=k(0) and time while the param-  stydy dependence of the parameters on the wave number.
eters acquire dependence ky{19]; we drop the subscript 0 Such a dependence for velocity increments was analyzed in
in ko in Eq. (2) and subsequent formulas to simplify notation. Ref. [19] with the expected result that for larger scales the

Thus one makes a closure by treating the combined effecfelocity increment PDF tends to a Gaussian form. The
of large scales, for which one has a different dynamical LDNGaussian form is reproduced also whBr-0 and B—0,
equation that could be in principle solved numericd®g],  je., the process becomes purely additive with a linear drift
and nonlocal interscale coupling, as a pair of given externajerm.
noises. The large-scale dynamics is local in wave number \ithout loss of generality one can put, in a numerical
space and hence it is weakly affected by the small scalesitudy,k=1 and the additive noise intensity=1 by rescaling
The price of the simplificatioi3) is that one introduces free the multiplicative noise intensitpp >0, the turbulent viscos-
parameters to the description. Matching small-scale dynamty parameterB>0, the kinematic viscosity,>0, and the
ics to the large-scale one deserves a separate study. Despi{®ss correlation parametkr The particular caseB=0 and
that 3D turbulence is known to be more sensitive to Iarge—,,O:o atA=0, and the general case xt0 were studied in
scale forcing or boundary conditions, as compared to the 2[etail in Ref.[13]. Nonzero\ is responsible for an asymme-
one, the used simplification3) is relevant for high-  try of the PDF(4) and in 3D picture corresponds to a corre-
Reynolds-number flows to some extd®,23, and allows  |ation between stretching and vorticithe energy cascagle
one to advance in the analytical treatment of the problem. Iparticularly, in the Eulerian framework the third-order mo-
should be noted that scaling properties of the system dement of spatial velocity incremenrtsu)®) was found to be
scribed by Eq(4) reveal a robust character with respect to proportional to the cross-correlation parameter, in accord to a
the selection of noisesando, (see Ref[13] and references kind of generalized Karman-Howarth relationshi9].
therein). However, the approximation based on constant parameters

The acceleration PDF stemming from the stochastigioes not allow one to consider both the conditional and un-
model(2) and(3) has been calculated exactly in our previouscgonditional acceleration statistics.

work [13], In the next section, we extend the mod2j—4) by as-
. suming certain model parameters in ) to be dependent
3 I\ + BAPK2 - DX + \ on random velocity fluctuations. This extension is compat-
P(a)=C exp J dx DY2— X+ ible with the 3D LDN approach ag§ and o, depend on
0 velocity fluctuations and contain large-scale quantities due to
_ Cexd-»k¥D +F(c) +F(-0)] their definitions[19]. Such a functional dependence and
B (Da? - 2\a + o) *?(2Bka+ Vtk2)2B)\k/D2’ ) long-time fluctuations have been ignored when making the

simplification(3). We partially restore them. This is the main
point of our consideration, and the functional form of the
distribution is thus due to Eq4) with certain parameters
being now treated as functions of stochastic veloaityDb-

for constant parameters. Her€,is normalization constant
and we have denoted

o K2 2D3 servations are that the acceleration variance does depend on
F(c) = 1 5 In( the same component of velocity fluctuations. Local homoge-
2c,D°c \cic(c-Da+h) neity assumed by the Kolmogorov 1941 theory is thus bro-

5 ken that is a prerequisite to describe turbulence intermit-
X[B?(\+ch - Da)a+c(Dy{k*+com)]|, (5)  tency. The scaling approach indicates an essential character
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L ditional acceleration PDF(4) takes the form P(a|u)
/\ =P(al a(u),\(u)). Such a form was found to provide good
0.01 fits of (i) the conditional probability density functidd(a|u)
/ \ to Pe(alu); (i) the conditional acceleration variance
(a?|uy; and(iii ) the conditional mean acceleratida|u) [17]
a 0.0001 at variousu that meet the experimental dafd]. A brief
“/ \ report on these results is presented in R&8g).
1076 i \-_‘ However, a self-consistent consideration of the model as-
,/ Mgl sumes fitting ofP(a|u) to Pe(alu), and the marginal PDF
- .-.-:-_z"r' .‘7" s computed due to

-40 -20 0 20 40
a

FIG. 1. A comparison of the experimental unconditional La- Pm(a)_f_w P(a|u)g(u)du, 9
grangian acceleration PDfoty and the experimental conditional
Lagrangian acceleration PDF at velocity fluctuatiansO (line)
[2,3]; the acceleration componeatis normalized to unit variance. Where g(u) is PDF of independent velocity fluctuations,
should reproducé®.,y{@). The marginal distribution corre-

of such a dependence. Lagrangian intermittency is known t§PONds to a convolution of the stationary acceleration statis-

be much stronger than the Eulerian one due to existence &S With independent random velocity fluctuations. _

very intense vortical structures at small scales and absence of IN the present paper, we fill this gap. Our task is to fit a

the so-called sweeping effect in the Lagrangian frame. variety of the experimental data, both on the conditional and
We point out that the characteristic time of variation of unconditional statistics of acceleration, with a single set of fit

the parameters should be sufficiently large to justify approxi{arameters. For this purpose we use the following natural

mation that the resulting PDf) is used with independent St€ps. _ _

randomized parameter$(a|parameters Two well sepa- First we fit P(a|u)=P(a] a(u),A(u) given by Eq.(4) to

rated time scales in the Lagrangian velocity increment autoPexp{@|u) [3] assuming that the parameters dependidn

correlation have been established both by experiments ar@? €xponential way,

DNS [21]. The large time scale has been found of the order

of the Lagrangian integral scale and corresponds to a mag- a(u) = agexd|ul/u,],  Mu) =\ exd|ul/u,].  (10)

nitude part that is in accord to our assumption that the inten-

sity of noise along the trajectory is long-time fluctuating. _ . )
Hereafter, we use normalized accelerat@rand velocity

fluctuationsu. The fit parameter set iIB>0, v,>0, B>0,
N\o» U, >0, andu, >0 (ap=1, k=1). The relations in E¢(10)

The experimental unconditional and conditional distribu-mean that the additive noise intensity and the correlation
tions, which we denote for brevity Be,p(a) andpexpl(a|u)1 betv_veen the noises become higher for bigger velocity fluc-
respectively, were found to be approximately of the saméuat'0”§|u|-
stretched exponential form at0 (Fig. 1), and both reveala W fit P(a[0) to Peyy(a|0), that excludesi, andu, from
strong Lagrangian turbulence intermitteri&}. This similar- ~ consideration, by varyind, v, and B at ap=1 and \q
ity indicates that they share the same process underlying thie—0-005. We notice that the available conditional statistics
intermittency. Pexpt(a|u) is low for high velocities, the presented accelera-

Accordingly, in our previous studied3,16—18 we used tion range is small, ~14a<14, so that a rather big uncer-
the result of our direct fit of the PDH) to Pg,y(a), which tainty remains when determining fit values of the parameters.
was measured with a high precision; 3% relative uncertaintfohanges in shape &,{alu) with u increasing fromu=0 to
for |a|/(a?¥?<10[2,3]. We assumed that the parametars U=3.1 are captured independently by the fit parameters
and\ entering Eq(4) depend on the amplitude of Lagrang- andu,. The rgsult is shqwn in Flg..2. Good qverlappmg of
ian velocity fluctuationsi, while D, B, andu, are taken to be  €ach curve with data points at all fixed magnitudes: dfas
fixed at the fitted valueék=1). Theoretically, onlya and A been achieved. N
depend explicitly on large-scale velocity due to 3D LDN  Second we calculate the conditional meanu) and the
model, while the other parameters do not. conditional variancéa?|u) and compare them with the ex-

An exponential form ofa(u) has been proposed in Ref. perimental data. This decreases uncertainty in fit parameter
[13] and was found to be relevant from both tt€olmog- values. The results are shown in Figs. 3 and 4. Note that
orov, 1963 phenomenological and experimental points of(&|u) as a function ot is very small that does not match the
view. Particularly, such a form leads to the log-normal RINexperiment. We will discuss this in Sec. IV below.
model whenu is independent Gaussian distributed with zero  Finally we calculate numerically the marginal distribution
mean [12], and yields the acceleration PDF whose low-Pn(@) given by Eq. (9) with the conditional PDF
probability tails are in agreement with experimefés13). P(al a(u),\(u)) and Gaussian distribution of velocity fluc-
Also, we used an exponential form &fu) so that the con- tuations,

IIl. CONDITIONAL ACCELERATION STATISTICS
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0.00001 ey . i N
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/ \ ; 0.gtA "
- 0 0.5 1 1.5 2 2.5
1077 // \\ .
A /| N e
e e o~ FIG. 4. Theoretical conditional acceleration variaka8 u) (tri-
100} 4w, N R angles and the experimental conditional acceleration variance
/ oS (squaresas functions of velocity fluctuations.
- ) N The quality of these sample fits is better than in the other
1o recent stochastic models reviewed in Réf3]. In particular,

N the core of the unconditional distribution reproduces very
well that given by the stretched exponeniia) as shown in
FIG. 2. Theoretical conditional acceleration PPFa|u) (line)  Fig. 6. However, both curves a bit underestimate the height
and the experimental conditional acceleration RD&shed lingat gt 3=0.
velocity fluctuationsu=0,0.45,0.89,1.3,1.8,2.2,2.7,33] (from top The valuexo=-0.005 has been obtained by adjusting the
to bottom, shifted by repeated factor 0.1 for clayitihe accelera- thegretical curve to slightly different heights of the peaks of
tion componenta |s_norma_llzed_ to unit variance, and _the same the observeda®P(a) shown in Fig. 7. Note that the model
component of velocity is given in root mean square units. does not assume the useasf hocskewness of the forcing.
Nonzero cross correlation parametemnaturally results not

1 u? only in small mean acceleration but also in a skewness of
g(u) = —exp - - |, (11)

= 2 both the theoretical distribution®(alu) and P,(a). This

skewness may be associated to the Eulerian downscale skew-
ness generation, which despite of being small for homoge-
neous flows is known to be of a fundamental character in the
inertial range(Kolmogorov four-fifths law, since the Eule-

rian {(5u)®) was found to be proportional to cross-
correlation parameter.

We stress that the observed very small skewness of accel-
ation distribution is attributed to the effect of anisotropy of

at fixeda ranging from —100 to 100 with the step 0.1. Then
we make an interpolation and fit it #,,,(a). A noticeable
effect of the integration oven with Gaussiarg(u) is a wid-
ening of tails of the distribution that meets Fig. 1; the inte-
gration range —26:u< 20 has been used. The fit Bf,(a) to
Pexp@) strongly decreases the uncertainty but the most stricér

determination of fit values comes due to a comparison of th¢,» studied flow. How the large-scale asymmetry affects
theoretical contribution to fourth-order momeatP(a), with  gajiest scales of the flow is an interesting problem. Our fit

the experimental data. The results are shown in Figs. 5-1,54e by using nonzern is of an illustrative character, to
verify whether it can explain the observed increase of the

0.25 o1 /\
0.2

u 0.001 / \
0.15
. // a 0.00001 _,// \\
0.05 107’ / % .

<alu>

a2

0 H\!/ ..... Ahee... P Y A k... A A S =, NS
0 0.5 1 1.5 2 2.5 -60 -40 -20 0 20 40 60
u
FIG. 3. Theoretical conditional acceleration me@ju) (tri- FIG. 5. Theoretical marginal PDP) for Gaussian distributed
angles and the experimental conditional acceleration meanvelocities (line), experimental data &R, =690 [2] (dot9, and the
(squaresas functions of velocity fluctuations. stretched exponential fitl) (dashed ling
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FIG. 7. Contribution to the kurtos&*P(a). Same notation as in

FIG. 6. Double-linear plot of the central part of the curves of Fig. 5

Fig. 5. Same notation as in Fig. 5.

conditional mean acceleration with increasing velocity de-_ To reduce the discrepancy, we have tried the valye

. — g . . . =1.0 instead ofu,=3.0 to provide faster increase pf| for
R|/cted in Fig. 3. This issue will be discussed further in Sec'higher|u|. This implies a good fit to the experimental condi-

The following remarks are in order. Our finding is that thetlonal mean acceleratidsee, e.g., Fig. 2 in RefL8]) but we

conditionu,<u, provides a convergence &,(a). Also, u, found an excess asymmetry Q(alu)' at high t with big
. L departure from observations, and divergencies when calcu-
should not be small to provide assumed conditiod « at

arbitraryu (the cross correlation is small as compared to bothll?tTiJ OP m(riz/;/s-rpaitga};(;r; (?Jf) g]teu d_|v3e Bgigi{];; t::g% )maets
noise intensitiestx and D) [13,19. We used these criteria » 9 a

when making the fits comparable or bigger thaa with increasingu, and when

- s . \?— Da the functionF(c) defined by Eq(5) undergoes un-
The resulting sample fit values are given b
HHing ple fit val g y bound growth. Thus we conclude that the observed condi-

D=21, pyy=5.0, B=0.35, tional mean acceleration is mainly due to the flow anisotropy
(120  effect rather than some intrinsic dynamical mechanism asso-
Ao=-0.005, u,=3.0, u,=3.0, ciated to the developed turbulence.

] ] o In general one observes a rather small relative increase of
with ap=1 andk=1. The theoretical curves in Figs. 2-7 are yne conditional mean acceleration for highelrthat eventu-
shown for this sample set of values, which require a furthegy reflects a coupling of the acceleration to large scales of
flne tuning. Suc_h a small va_lue Mas comparegl taeorDis _ the studied flow{19,22. This coupling could be accounted
in agreement with that obtained in the LDN direct numericalgiso py introducing a correlation between the acceleration
simulations. The calculated flatness fadkor49.3 of Pr(@)  and velocity fluctuations. This possibility is of much interest
is in agreement with the experimental value 55+8. _ to explore as it may yield the deficient increaseaffu) but

To summarize, the considered Navier-Stokes equaltiol} is peyond the scope of the present formalism, which as-
based 1D toy mode#)~(10) is capable to fit all the available - ;;mes an independent velocity statistics. We note also that in
high-precision experimental data on the conditional and ungonirast to the experimental data on the varia@u) the

c_ondltlonal Lagrangian acceleration statisiits 3| W'th_the experimentala|u) exhibits small asymmetry with respect to
single set of parameterd?) to a good accuracy, with an P
u——u (not shown in Fig. 3

exception being only the conditional mean acceleration. In the present paper, the multiplicative noise intenglty

was taken to be independent on the velocity fluctuatiens
IV. DISCUSSION AND CONCLUSIONS The effect of variation oD has been considered in R¢L3]
with the qualitative result that it does not provide the specific
One can see from Flg 3 that at the values of fit param'change in Shape d?(a|u) observed in experiments_ How-

eters(12) the predicted conditional mean accelerat{ahu) ever, a weak dependence Bfon u cannot be ruled out.
qualitatively is in agreement but does not reproduce the ex- |n summary, the presented 1D LDN type stochastic toy
perimental data. Namely, it is nonzero due to nonzeamd  model with the velocity-dependent additive noise intensity
increases with the increase pf| but remains to be very and cross correlation parameter is shown to capture the main
small even at high values @i|. The conditional mean accel- features of the observed conditional and unconditional La-
eration is evidently zero for a symmetrical distributi  grangian acceleration statistics to a good accuracy except for
=0) and should be zero for statistically homogeneous isotrothe discrepancy in the conditional mean acceleration which
pic turbulence. The observed departure from zero is thougttan be attributed to certain coupling of the acceleration to
to reflect anisotropy of the studied flow albeit the DNS of large scales of the studied flow.
homogeneous isotropic turbulence also reveals slightly non- The main result is of course not only good sample fits
zero meari3]. which are important to test the performance of the model but
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also certain advance in understanding of the mechanism dahe flow anisotropy. The cross correlation is related to the
Lagrangian intermittency provided by the dynamical Laval-four-fiths Kolmogorov law but the effect of skewness is
Dubrulle-Nazarenko approach to small-scale turbulence. negligibly small as the result of relatively large intensity of
The central point is that the LDN toy model has a strongthe additive noise, which tends to symmetrize acceleration
deductive support from the Navier-Stokes turbulence. Thelistributions. This is a dynamical evidence implied by the
obtained exact analytic result for the conditional acceleratioomodel rather than a direct consequencegiriori assump-
distribution and the use of recent high-precision Lagrangiarion on isotropy in the spirit of the Kolmogorov 1941 theory.
experimental data on conditional and unconditional accelerafhe use of exponential dependence of certain noise param-
tion statistics provide a detailed analysis of the mechanismeters on statistically independent Gaussian distributed La-
within the adopted framework. Effects of large time scalesgrangian velocity fluctuations has been found appropriate to
(nonlocality) and turbulent viscositynonlinearity have been cover different experimental data on conditional statistics
found of much importance in Lagrangian accelerationand to transfer from the conditional to unconditional accel-
steady-state statistics. The detailed study of conditional aceration distribution both exhibiting a strong Lagrangian in-
celeration statistics have revealed a specific model structutermittency of the flow. Such a dependence is also compat-
of the external large-scale dynamics and nonlocal interscalible with the log-normal statistics assumed by the
coupling for homogeneous high-Reynolds-number flowsKolmogorov 1962 theory. The Gaussian white-in-time mul-
The additive noise associated to the downscale energy trangplicative noise and long-time correlated intensity of the ad-
fer mechanism encodes the main contribution to the velocitylitive noise were both found to make an essential contribu-
dependence of the acceleration statistics. The cross correléien to intermittent bursts.
tion between the model additive and multiplicative noises
associated to a correlation between §tre§ch|ng and vorticity ACKNOWLEDGMENTS
naturally provides a skewness of distributions and a nonzero
mean. The weakness of this correlation is a theoretical re- The author is grateful to A. M. Reynolds for valuable
quirement that meets the Lagrangian and Eulerian expercomments on issues related to the present formalism and for
ments and DNS of homogeneous isotropic turbulence. Theending his work, and to M. I. Mazhitov for stimulating dis-
observed conditional mean acceleration is mainly related teussions.
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