
Conditional Lagrangian acceleration statistics in turbulent flows
with Gaussian-distributed velocities

A. K. Aringazin*
Department of Theoretical Physics, Institute for Basic Research, Eurasian National University, Astana 473021, Kazakhstan

(Received 21 December 2003; revised manuscript received 19 April 2004; published 3 September 2004)

The random intensity of noise approach to the one-dimensional Laval-Dubrulle-Nazarenko-type model
having deductive support from the three-dimensional Navier-Stokes equation is used to describe Lagrangian
acceleration statistics of a fluid particle in developed turbulent flows. Intensity of additive noise and cross
correlation between multiplicative and additive noises entering a nonlinear Langevin equation are assumed to
depend on random velocity fluctuations in an exponential way. We use an exact analytic result for the accel-
eration probability density function obtained as a stationary solution of the associated Fokker-Planck equation.
We give a complete quantitative description of the available experimental data on conditional and uncondi-
tional acceleration statistics within the framework of a single model with a single set of fit parameters. The
acceleration distribution and variance conditioned on Lagrangian velocity fluctuations and the marginal distri-
bution calculated by using independent Gaussian velocity statistics are found to be in a good agreement with
the recent high-Reynolds-number Lagrangian experimental data. The fitted conditional mean acceleration is
very small, that is, in agreement with direct numerical simulations, and increases for higher velocities but it
departs from the experimental data, which exhibit anisotropy of the studied flow.
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I. INTRODUCTION

Data analysis and modeling of statistical properties of a
Lagrangian particle advected by a fully developed turbulent
flow is of much practical interest and complements tradi-
tional studies made in the Eulerian framework. The strong
and nonlocal character of Lagrangian particle coupling due
to pressure effects makes the main obstacle to derive turbu-
lence statistics from the Navier-Stokes equation. Recent
breakthrough Lagrangian experiments[1–3] have motivated
growing interest to a single-particle statistics. Some phenom-
enological approaches[4,5] inspired by the nonextensive sta-
tistics formalism were used[6] to describe Lagrangian accel-
eration of a fluid particle in a stationary developed turbulent
flow within the framework of a Langevin type equation; see
also Refs.[7–9].

Some toy models of developed turbulence suffer from the
lack of justification of a fit from turbulence dynamics[14],
and the connection between specific nonthermodynamical
processes and nonextensive mechanisms was argued to be
generally not well defined[15]. Recent one-dimensional
(1D) stochastic particle models and their refinements[10–12]
were reviewed in Ref.[13], in which the importance of
Navier-Stokes equation based approaches is emphasized.

Fluid particle dynamics in a developed turbulent flow is
described in terms of a generalized Brownian motion with
the Lagrangian acceleration of an individual particle viewed
as a dynamical variable. In the data processing, the accelera-
tion is associated with the Lagrangian velocity increment in
time for sufficiently small time scales, in a far dissipative

subrange where turbulent fluctuations are smoothed. Such
models are generally based upon a hierarchy of characteristic
time scales in the system and naturally employ a one-point
statistical description using a Langevin type equation, or the
associated Fokker-Planck equation for a one-point probabil-
ity density function of the variable. Noises entering the
Langevin type equation are treated along a fluid particle tra-
jectory, and the Fokker-Planck approximation makes connec-
tion between the dynamics and statistical approach.

Recently we have shown[13,16–18] that the 1D Laval-
Dubrulle-Nazarenko(LDN) toy model[19,20] of the accel-
eration evolution with the model turbulent viscositynt and
coupled d-correlated Gaussian multiplicative and additive
noises is in a good agreement with the high-precision La-
grangian experimental data on acceleration statistics[1–3];
the Taylor microscale Reynolds numberRl=690, the mea-
sured normalized acceleration range is −60øa/ ka2l1/2ø60,
and the resolution is 1/65 of the Kolmogorov length scale of
the flow. The long-standing Heisenberg-Yaglom scaling of a
component of Lagrangian acceleration, ka2l
=a0ū

9/2n−1/2L−3/2, was confirmed experimentally[1] to a very
high accuracy, for about seven orders of magnitude in the
acceleration variance, or two orders of the root mean square
velocity ū, at Rl.500; a0 is the Kolmogorov constant,n is
the kinematic viscosity, andL is the Lagrangian integral
length scale. Long-time correlations and the occurrence of
very large fluctuations at small scales dominate the motion of
a fluid particle, and this leads to a new dynamical picture of
turbulence[21,22].

The original 3D and 1D LDN models were formulated
both in the Lagrangian and Eulerian frameworks for small-
scale velocity increments in time and space, respectively.
They are based on the Gabor transformation(Fourier trans-
form in windows) and a stochastic kind of Batchelor-
Proudman rapid distortion theory(RDT) approach to the in-
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compressible 3D Navier-Stokes equation[19], and thus have
a deductive support from turbulence dynamics. A study
based on direct numerical simulations(DNS’s) of the 3D
LDN model in the regime of decaying turbulence has been
made.

The random intensity of noise(RIN) approach[13,16]
provides an extension of the 1D LDN model viewed in the
limit of small time-scalet for which Lagrangian velocity
increments are proportional tot: ust+td−ustd=tastd.

The main idea of the RIN approach is simply to account
for the recently established two well separated Lagrangian
autocorrelation time scales for the velocity increments[21]
and assume that certain model parameters, such as intensity
of noise and fluctuate atlarge time scale.

An analysis of such a simple 1D model can shed some
light to properties of the 3D LDN model of Lagrangian dy-
namics. Recent development of the 3D LDN model can be
found in Ref. [23], in which some interesting methods of
turbulent dynamo problem have been exploited.

The experimental data on the axial component of La-
grangian accelerationa of polystyrene tracer particle in the
Rl=690 water flow generated between counter-rotating disks
have been fitted by the stretched exponential[1–3],

Psad = C expF−
a2

s1 + ub1a/b2ub3db2
2G . s1d

Here, b1=0.513±0.003, b2=0.563±0.02, and b3
=1.600±0.003 are fit parameters, andC=0.733 is a normal-
ization constant. The studied flow is highly anisotropic at
large scales and this appears to affect small scales, resulting
in a small skewness of the acceleration distribution and ob-
servable distinction in the distributions of different compo-
nents of the velocity. At large acceleration values, tails of the
distribution (1) decay asymptotically as expf−uau0.4g that im-
plies a convergence of the fourth-order momentka4l
=e−`

` a4Psadda, as confirmed by the experiment with mea-
sured normalized acceleration values up touau =60. The flat-
ness factor of the distribution(1) which characterizes widen-
ing of its tails (when compared to a Gaussian) is F
;ka4l / ka2l2=55.1, that is in agreement the experimental
value F=55±8. The Kolmogorov time of the flow isth

=0.93 ms. Low-pass filtering with the 0.23th width of the
collected 1.73108 data points was used, and the response
time of the optically tracked 46-mm tracer particle is 0.12th.

Recently, Chevillardet al. [22] have constructed an ap-
propriately recasted multifractal approach to describe statis-
tics of Lagrangian velocity increments in a wide range of
time scales, from the integral to dissipative one. The result-
ing theoretical distribution reproduces continuous widening
of the velocity increment probability density function(PDF)
with the decrease of time scale, from a Gaussian-shaped to
the stretched exponential as observed in Lagrangian experi-
ments carried out at Cornell[1–3] and ENS-Lyon[21,24],
and DNS of the 3D Navier-Stokes equation. Two global pa-
rameters(Reynolds number and Lagrangian integral time
scale) and two local parameters(intermittency parameter and
smoothing parameter) with a parabolic singularity spectrum
were used to cover the data in the entire range of time scales.

At dissipative time scale the obtained PDF fits the experi-
mental data on Lagrangian acceleration to a good accuracy.
The cumulant analysis made in this approach provides an
understanding of the observed departures from the scaling
when going from the integral to dissipative timescale. The
used parabolic singularity spectrumDshd is a hallmark of the
log-normal (Kolmogorov, 1962) statistics and reproduces
well the left-hand side(corresponding to intense velocity in-
crements) of the observed curve which is centered at
0.58s.1/2d but increasingly deviates at the right-hand side
of it (corresponding to weak velocity increments). Another
widely used statistics, the log-Poisson one, was shown to
depart from Lagrangian observations in the same manner.
The conditional acceleration statistics was not considered in
this work.

In a recent paper A. Reynolds[25] developed a self-
consistent second-order stochastic model with additive noise
which accounts for dependence of the Lagrangian accelera-
tion covariance matrix on Lagrangian velocitiesu. The ob-
served dependence of the conditional acceleration variance
ka2uul on u [3] was partially understood in terms of Lagrang-
ian accelerations induced by vortex tubes within which the
vorticity is constant and outside which the vorticity vanishes.
Scaling relations were invoked to derive a third-order poly-
nomial structure of the isotropic covariance matrix as a func-
tion of squared velocityu2 [26]. The inclusion of such con-
ditional acceleration covariances in the model resulted in
reduction of the predicted occurrence of small accelerations
that meets experimental and DNS data for unconditional dis-
tributions. The cores of the resulting conditional acceleration
distributions were found to broaden with increasingu, in a
qualitative agreement with the experiment.

Sawford et al. [26] have studied acceleration statistics
from laboratory measurements and direct numerical simula-
tions in 3D turbulence atRl ranging from 38 to 1000. For
largeuuu, the conditional acceleration covariance behaves like
u6. This is qualitatively consistent with the stretched expo-
nential tails of the unconditional acceleration PDF. The con-
ditional mean rate of change of the acceleration derived from
the data has been shown consistent with the drift term in
second-order Lagrangian stochastic models of turbulent
transport. The correlation between the square of the accelera-
tion and the square of the velocity has been shown small but
not negligible.

In very recent papers Biferaleet al. [27,28] have pre-
sented interesting results of DNS of Lagrangian transport in
homogeneous and isotropic turbulence withRl up to 280, a
very accurate resolution of dissipative scales, and an integra-
tion time of about Lagrangian time scale. They have shown
how the multifractal formalism offers an alternative ap-
proach which is rooted in the phenomenology of turbulence.
The Lagrangian statistics was derived from the Eulerian sta-
tistics without introducingad hochypotheses. Although the
formalism is not capable to account for small acceleration
values(typical situation for the multifractal approach), the
obtained acceleration PDF captures the DNS data well in the
tails, with normalized acceleration values ranging from about
uau / ka2l1/2=1 up touau / ka2l1/2=80. Alas, one can observe an
overestimation in this range which can be clearly seen from
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the predicted contribution to the fourth-order moment,
a4Psad, as compared to the DNS data. The high degree of
isotropy of the simulated stationary flow suggests equiva-
lence of Cartesian components of acceleration aligned to
fixed directions, and the resulting DNS distribution obtained
by averaging over the components has been found with no
observable asymmetry with respect toa→−a. The multifrac-
tal approach has been also used[28] to obtain acceleration
moments conditional on the velocity. Particularly, the multi-
fractal predictionka2uul,u4.57 agrees well with the DNS
data for large velocity magnitudes. The predicted exponent
4.57 differs from the value 6 predicted recently by Sawford
et al. [26] and is very close to the Heisenberg-Yaglom scal-
ing exponent value 9/2. This indicates that the averaging of
the above conditional acceleration varianceka2uul over
Gaussian distributed velocityu is consistent with the
Heisenberg-Yaglom scaling law[see remark and Eq.(68) of
Ref. [13]].

In the present paper, we focus on the 1D LDN type dy-
namical modeling of the Lagrangian accelerationconditional
on velocity fluctuationspresented recently by Mordant,
Crawford, and Bodenschatz in the experimental work[3]. In
contrast to our previous studies of the conditional accelera-
tion statistics [13,16–18], here we give a self-consistent
treatment of the model by explicit accounting for a Gaussian
distribution of Lagrangian velocity fluctuations that is ob-
served experimentally. We give a complete quantitative de-
scription of the available experimental data onboth the con-
ditional and unconditional acceleration statistics within the
framework of a single model with a single set of fit param-
eters. The importance of the present approach is that the
Lagrangian single-particle modeling is dynamical and has a
deductive support from the Navier-Stokes equation, with few
assumptions justified by the turbulence phenomenology be-
ing used. This approach adds a different look to homoge-
neous isotropic turbulence modeling which is alternative to
those given by the recent multifractal andad hocLangevin
stochastic approaches.

It should be emphasized that the Lagrangian velocity is
known to follow Gaussian distribution to a very good accu-
racy while the Lagrangian acceleration follows highly non-
Gaussian distribution which is related to extremely intermit-
tent character of the acceleration, with pronounced central
peak and relatively frequent acceleration bursts up to 80
standard deviations. We note that, theoretically, time deriva-
tive of a dynamical variable does not necessarily follow the
same statistical distribution as that of the variable.

Our consideration is restricted to a stationary one-point
distribution function. Two-point statistical analysis is of
much interested and can be made elsewhere.

The paper is organized as follows. In Sec. II we give a
brief description of the 1D LDN model and present the re-
sulting acceleration distribution, which we treat as a condi-
tional one by assigning stochastic properties to certain pa-
rameters. In Sec. III we briefly review results of our previous
work and make sample fits of the obtained conditional and
unconditional acceleration distributions and moments to the
experimental data. In Sec. IV we discuss the obtained results
and make conclusions.

II. 1D LAVAL-DUBRULLE-NAZARENKO MODEL
OF SMALL-SCALE TURBULENCE

In this section, we present only a brief sketch of the 1D
LDN model and refer the reader to Refs.[13,19] for more
details; see also Ref.[23]. This toy model can also be viewed
as a passive scalar in a compressible 1D flow.

The main assumption of the LDN approach to the 3D
Navier-Stokes turbulence is to introduce and separate large-
scale and small-scale parts in the 3D Navier-Stokes equation
by using the Gabor transformation[19]. This allows us to
consider analytically small-scale turbulence coupled to large-
scale terms(the interscale coupling). The approach allows
one to account for nonlocal interactions which were argued
to be important in understanding intermittency in developed
turbulent flows. The other, large-scale, part of the equation
can be treated separately(and, in principle, solved numeri-
cally given the forcing and boundary conditions) since the
forcing is characterized by presumably narrow range of small
wave numbers, and the small scales make little effect on it.
Small-scale interactions are modeled by a turbulent viscosity
and were shown numerically to make a small contribution to
the anomalous scaling(intermittency) in the decaying turbu-
lence. Nevertheless, these are important when fitting model
distribution to the experimental data. The 3D LDN model of
small scale turbulence was used to formulate a simplified 1D
LDN model, which was studied both in the Eulerian and
Lagrangian frames[19].

We use probability density function obtained as a station-
ary solution of the Fokker-Planck equation that corresponds
to a consideration of statistically stationary state; statistical
homogeneity and isotropy of the 3D flow is assumed as well.
This equation is derived from the Langevin equation for a
component of Lagrangian accelerationastd [13,19],

] a

] t
= sj − ntk

2da + s', s2d

wherent=În0
2+B2a2/k2 is the turbulent viscosity modeling

small-scale interactions,n0 is constant kinematic viscosity,B
is free parameter measuring the contribution of nonlinearity
in a to the turbulent viscosity, andk is wave number;]tk
=−kj, ks0d=k0, to model the RDT stretching effect in the
one-dimensional case.

In the original 3D LDN model based on the Navier-Stokes
equation,jstd is related to the velocity derivative tensor and
s'std describes a forcing of small scales by large scales via
the energy cascade mechanism(nonlocal interscale cou-
pling). In the 1D LDN model, these are approximated by a
sufficiently simple statistics inspired by the Kraichnan en-
semble used for turbulent passive scalar and the Kraichnan-
Kazantsev model of turbulent dynamo: external Gaussian
white-in-time noises along a fluid particle trajectory,

kjstdl = 0, kjstdjst8dl = 2Ddst − t8d, ks'stdl = 0,

ks'stds'st8dl = 2adst − t8d, kjstds'st8dl = 2ldst − t8d.

s3d

Here,D, a, andl are free parameters measuring intensity of
the noises and their cross correlation, respectively. BiggerD

CONDITIONAL LAGRANGIAN ACCELERATION… PHYSICAL REVIEW E 70, 036301(2004)

036301-3



and a means bigger contribution of the velocity derivative
tensor and the interscale coupling(both viewed here as short-
time autocorrelated processes) to the small-scale dynamics.

The model(3) imposes an obvious limitation but is par-
tially justified by DNS in the laboratory frame of reference
[19]. The averaging is made over ensemble realizations. Zero
means correspond to isotropy of the forces. Physically, the
small scales are thus assumed to be stochastically distorted
by much larger scales. We stress that a correlation between
the noisesj and s' is not ad hocassumption but a conse-
quence of their structure as they contain the same large-scale
velocity serving as a unifying agent between the noises.

It should be emphasized that the 1D LDN toy model and
its particular case(2) have several limitations related to the
LDN separation of small and large scales allowing to study
exclusively nonlocal effects associated to the linear process
of distortions of small scales by a strain produced by large
scales, the use of model turbulent viscosity, and one dimen-
sionality.

In the Lagrangian frame the wave numberk is replaced in
terms of the initial valuek0=ks0d and time while the param-
eters acquire dependence onk0 [19]; we drop the subscript 0
in k0 in Eq. (2) and subsequent formulas to simplify notation.

Thus one makes a closure by treating the combined effect
of large scales, for which one has a different dynamical LDN
equation that could be in principle solved numerically[23],
and nonlocal interscale coupling, as a pair of given external
noises. The large-scale dynamics is local in wave number
space and hence it is weakly affected by the small scales.
The price of the simplification(3) is that one introduces free
parameters to the description. Matching small-scale dynam-
ics to the large-scale one deserves a separate study. Despite
that 3D turbulence is known to be more sensitive to large-
scale forcing or boundary conditions, as compared to the 2D
one, the used simplification(3) is relevant for high-
Reynolds-number flows to some extent[19,23], and allows
one to advance in the analytical treatment of the problem. It
should be noted that scaling properties of the system de-
scribed by Eq.(4) reveal a robust character with respect to
the selection of noisesj ands' (see Ref.[13] and references
therein).

The acceleration PDF stemming from the stochastic
model(2) and(3) has been calculated exactly in our previous
work [13],

Psad = C expFE
0

a

dx
− k2xÎn0

2 + B2x2/k2 − Dx + l

Dx2 − 2lx + a
G

=
C expf− ntk

2/D + Fscd + Fs− cdg

sDa2 − 2la + ad1/2s2Bka+ ntk
2d2Blk/D2 , s4d

for constant parameters. Here,C is normalization constant
and we have denoted

Fscd =
c1k

2

2c2D
2c

lnS 2D3

c1c2sc − Da + ld

3fB2sl2 + cl − Dada + csDnt
2k2 + c2ntdgD , s5d

c = − iÎDa − l2, s6d

c1 = B2s4l3 + 4cl2 − 3Dal − cDad + D2sc + ldn0
2k2, s7d

c2 = ÎB2s2l2 + 2cl − Dadk2 + D2n0
2k4. s8d

The distribution(4) is characterized by the presence of ex-
ponential cut off, complicated power-law dependence, and
terms responsible for a skewness(asymmetry with respect to
a→−a).

One way when comparing the model with the experiment
is to make a direct fit of the obtained PDF(4) to the experi-
mental data on unconditional acceleration distribution by as-
suming all the parameters and wave number to be constant.

Particularly, this implies a reduction of the original 1D
LDN model since the wave number is taken to be fixed so
that the artificial 1D compressibility aimed to model the
RDT stretching effect in the 1D case is not considered. We
note that the Lagrangian acceleration is usually associated to
the dissipative scale, and in the present paper we do not
study dependence of the parameters on the wave number.
Such a dependence for velocity increments was analyzed in
Ref. [19] with the expected result that for larger scales the
velocity increment PDF tends to a Gaussian form. The
Gaussian form is reproduced also whenD→0 and B→0,
i.e., the process becomes purely additive with a linear drift
term.

Without loss of generality one can put, in a numerical
study,k=1 and the additive noise intensitya=1 by rescaling
the multiplicative noise intensityD.0, the turbulent viscos-
ity parameterB.0, the kinematic viscosityn0.0, and the
cross correlation parameterl. The particular casesB=0 and
n0=0 at l=0, and the general case atl=0 were studied in
detail in Ref.[13]. Nonzerol is responsible for an asymme-
try of the PDF(4) and in 3D picture corresponds to a corre-
lation between stretching and vorticity(the energy cascade).
Particularly, in the Eulerian framework the third-order mo-
ment of spatial velocity incrementksdlud3l was found to be
proportional to the cross-correlation parameter, in accord to a
kind of generalized Kármán-Howarth relationship[19].
However, the approximation based on constant parameters
does not allow one to consider both the conditional and un-
conditional acceleration statistics.

In the next section, we extend the model(2)–(4) by as-
suming certain model parameters in Eq.(4) to be dependent
on random velocity fluctuations. This extension is compat-
ible with the 3D LDN approach asj and s' depend on
velocity fluctuations and contain large-scale quantities due to
their definitions [19]. Such a functional dependence and
long-time fluctuations have been ignored when making the
simplification(3). We partially restore them. This is the main
point of our consideration, and the functional form of the
distribution is thus due to Eq.(4) with certain parameters
being now treated as functions of stochastic velocityu. Ob-
servations are that the acceleration variance does depend on
the same component of velocity fluctuations. Local homoge-
neity assumed by the Kolmogorov 1941 theory is thus bro-
ken that is a prerequisite to describe turbulence intermit-
tency. The scaling approach indicates an essential character
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of such a dependence. Lagrangian intermittency is known to
be much stronger than the Eulerian one due to existence of
very intense vortical structures at small scales and absence of
the so-called sweeping effect in the Lagrangian frame.

We point out that the characteristic time of variation of
the parameters should be sufficiently large to justify approxi-
mation that the resulting PDF(4) is used with independent
randomized parameters,Psauparametersd. Two well sepa-
rated time scales in the Lagrangian velocity increment auto-
correlation have been established both by experiments and
DNS [21]. The large time scale has been found of the order
of the Lagrangian integral scale and corresponds to a mag-
nitude part that is in accord to our assumption that the inten-
sity of noise along the trajectory is long-time fluctuating.

III. CONDITIONAL ACCELERATION STATISTICS

The experimental unconditional and conditional distribu-
tions, which we denote for brevity byPexptsad andPexptsauud,
respectively, were found to be approximately of the same
stretched exponential form atu=0 (Fig. 1), and both reveal a
strong Lagrangian turbulence intermittency[3]. This similar-
ity indicates that they share the same process underlying the
intermittency.

Accordingly, in our previous studies[13,16–18] we used
the result of our direct fit of the PDF(4) to Pexptsad, which
was measured with a high precision; 3% relative uncertainty
for uau / ka2l1/2ø10 [2,3]. We assumed that the parametersa
andl entering Eq.(4) depend on the amplitude of Lagrang-
ian velocity fluctuationsu, while D, B, andn0 are taken to be
fixed at the fitted valuessk=1d. Theoretically, onlya andl
depend explicitly on large-scale velocity due to 3D LDN
model, while the other parameters do not.

An exponential form ofasud has been proposed in Ref.
[13] and was found to be relevant from both the(Kolmog-
orov, 1962) phenomenological and experimental points of
view. Particularly, such a form leads to the log-normal RIN
model whenu is independent Gaussian distributed with zero
mean [12], and yields the acceleration PDF whose low-
probability tails are in agreement with experiments[6,13].
Also, we used an exponential form oflsud so that the con-

ditional acceleration PDF(4) takes the form Psauud
=P(auasud ,lsud). Such a form was found to provide good
fits of (i) the conditional probability density functionPsauud
to Pexpsauud; (ii ) the conditional acceleration variance
ka2uul; and(iii ) the conditional mean accelerationkauul [17]
at variousu that meet the experimental data[3]. A brief
report on these results is presented in Ref.[18].

However, a self-consistent consideration of the model as-
sumes fitting ofPsauud to Pexptsauud, and the marginal PDF
computed due to

Pmsad =E
−`

`

Psauudgsuddu, s9d

where gsud is PDF of independent velocity fluctuations,
should reproducePexptsad. The marginal distribution corre-
sponds to a convolution of the stationary acceleration statis-
tics with independent random velocity fluctuations.

In the present paper, we fill this gap. Our task is to fit a
variety of the experimental data, both on the conditional and
unconditional statistics of acceleration, with a single set of fit
parameters. For this purpose we use the following natural
steps.

First we fit P(auud=Psauasud ,lsud) given by Eq.(4) to
Pexptsauud [3] assuming that the parameters depend onu in
an exponential way,

asud = a0 expfuuu/uag, lsud = l0 expfuuu/ulg. s10d

Hereafter, we use normalized accelerationa and velocity
fluctuationsu. The fit parameter set isD.0, n0.0, B.0,
l0, ua.0, andul.0 (a0=1, k=1). The relations in Eq.(10)
mean that the additive noise intensity and the correlation
between the noises become higher for bigger velocity fluc-
tuationsuuu.

We fit Psau0d to Pexptsau0d, that excludesua andul from
consideration, by varyingD, n0, and B at a0=1 and l0
=−0.005. We notice that the available conditional statistics
Pexptsauud is low for high velocities, the presented accelera-
tion range is small, −14,a,14, so that a rather big uncer-
tainty remains when determining fit values of the parameters.
Changes in shape ofPextsauud with u increasing fromu=0 to
u=3.1 are captured independently by the fit parametersua

and ul. The result is shown in Fig. 2. Good overlapping of
each curve with data points at all fixed magnitudes ofu has
been achieved.

Second we calculate the conditional meankauul and the
conditional varianceka2uul and compare them with the ex-
perimental data. This decreases uncertainty in fit parameter
values. The results are shown in Figs. 3 and 4. Note that
kauul as a function ofu is very small that does not match the
experiment. We will discuss this in Sec. IV below.

Finally we calculate numerically the marginal distribution
Pmsad given by Eq. (9) with the conditional PDF
P(auasud ,lsud) and Gaussian distribution of velocity fluc-
tuations,

FIG. 1. A comparison of the experimental unconditional La-
grangian acceleration PDF(dots) and the experimental conditional
Lagrangian acceleration PDF at velocity fluctuationsu=0 (line)
[2,3]; the acceleration componenta is normalized to unit variance.
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gsud =
1

Î2p
expF−

u2

2
G , s11d

at fixeda ranging from −100 to 100 with the step 0.1. Then
we make an interpolation and fit it toPexptsad. A noticeable
effect of the integration overu with Gaussiangsud is a wid-
ening of tails of the distribution that meets Fig. 1; the inte-
gration range −20øuø20 has been used. The fit ofPmsad to
Pexptsad strongly decreases the uncertainty but the most strict
determination of fit values comes due to a comparison of the
theoretical contribution to fourth-order moment,a4Psad, with
the experimental data. The results are shown in Figs. 5–7.

The quality of these sample fits is better than in the other
recent stochastic models reviewed in Ref.[13]. In particular,
the core of the unconditional distribution reproduces very
well that given by the stretched exponential(1) as shown in
Fig. 6. However, both curves a bit underestimate the height
at a=0.

The valuel0=−0.005 has been obtained by adjusting the
theoretical curve to slightly different heights of the peaks of
the observeda4Psad shown in Fig. 7. Note that the model
does not assume the use ofad hocskewness of the forcing.
Nonzero cross correlation parameterl naturally results not
only in small mean acceleration but also in a skewness of
both the theoretical distributionsPsauud and Pmsad. This
skewness may be associated to the Eulerian downscale skew-
ness generation, which despite of being small for homoge-
neous flows is known to be of a fundamental character in the
inertial range(Kolmogorov four-fifths law), since the Eule-
rian ksdlud3l was found to be proportional to cross-
correlation parameter.

We stress that the observed very small skewness of accel-
eration distribution is attributed to the effect of anisotropy of
the studied flow. How the large-scale asymmetry affects
smallest scales of the flow is an interesting problem. Our fit
made by using nonzerol is of an illustrative character, to
verify whether it can explain the observed increase of the

FIG. 2. Theoretical conditional acceleration PDFPsauud (line)
and the experimental conditional acceleration PDF(dashed line) at
velocity fluctuationsu=0,0.45,0.89,1.3,1.8,2.2,2.7,3.1[3] (from top
to bottom, shifted by repeated factor 0.1 for clarity); the accelera-
tion componenta is normalized to unit variance, and the same
component of velocityu is given in root mean square units.

FIG. 3. Theoretical conditional acceleration meankauul (tri-
angles) and the experimental conditional acceleration mean
(squares) as functions of velocity fluctuations.

FIG. 4. Theoretical conditional acceleration varianceka2uul (tri-
angles) and the experimental conditional acceleration variance
(squares) as functions of velocity fluctuations.

FIG. 5. Theoretical marginal PDF(9) for Gaussian distributed
velocities (line), experimental data atRl=690 [2] (dots), and the
stretched exponential fit(1) (dashed line).
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conditional mean acceleration with increasing velocity de-
picted in Fig. 3. This issue will be discussed further in Sec.
IV.

The following remarks are in order. Our finding is that the
conditionuaøul provides a convergence ofPmsad. Also, ul

should not be small to provide assumed conditionl!a at
arbitraryu (the cross correlation is small as compared to both
noise intensitiesa and D) [13,19]. We used these criteria
when making the fits.

The resulting sample fit values are given by

D = 2.1, n0 = 5.0, B = 0.35,
s12d

l0 = − 0.005, ua = 3.0, ul = 3.0,

with a0=1 andk=1. The theoretical curves in Figs. 2–7 are
shown for this sample set of values, which require a further
fine tuning. Such a small value ofl as compared toa or D is
in agreement with that obtained in the LDN direct numerical
simulations. The calculated flatness factorF=49.3 of Pmsad
is in agreement with the experimental value 55±8.

To summarize, the considered Navier-Stokes equation
based 1D toy model(4)–(10) is capable to fit all the available
high-precision experimental data on the conditional and un-
conditional Lagrangian acceleration statistics[1–3] with the
single set of parameters(12) to a good accuracy, with an
exception being only the conditional mean acceleration.

IV. DISCUSSION AND CONCLUSIONS

One can see from Fig. 3 that at the values of fit param-
eters(12) the predicted conditional mean accelerationkauul
qualitatively is in agreement but does not reproduce the ex-
perimental data. Namely, it is nonzero due to nonzerol and
increases with the increase ofuuu but remains to be very
small even at high values ofuuu. The conditional mean accel-
eration is evidently zero for a symmetrical distributionsl
=0d and should be zero for statistically homogeneous isotro-
pic turbulence. The observed departure from zero is thought
to reflect anisotropy of the studied flow albeit the DNS of
homogeneous isotropic turbulence also reveals slightly non-
zero mean[3].

To reduce the discrepancy, we have tried the valueul

=1.0 instead oful=3.0 to provide faster increase ofulu for
higher uuu. This implies a good fit to the experimental condi-
tional mean acceleration(see, e.g., Fig. 2 in Ref.[18]) but we
found an excess asymmetry ofPsauud at high u, with big
departure from observations, and divergencies when calcu-
lating Pmsad. The reason of the divergency is thatlsud at
ul=1.0 grows faster thanasud at ua=3.0 so thatl becomes
comparable or bigger thana with increasingu, and when
l2→Da the functionFscd defined by Eq.(5) undergoes un-
bound growth. Thus we conclude that the observed condi-
tional mean acceleration is mainly due to the flow anisotropy
effect rather than some intrinsic dynamical mechanism asso-
ciated to the developed turbulence.

In general one observes a rather small relative increase of
the conditional mean acceleration for higheruuu that eventu-
ally reflects a coupling of the acceleration to large scales of
the studied flow[19,22]. This coupling could be accounted
also by introducing a correlation between the acceleration
and velocity fluctuations. This possibility is of much interest
to explore as it may yield the deficient increase ofkauul but
it is beyond the scope of the present formalism, which as-
sumes an independent velocity statistics. We note also that in
contrast to the experimental data on the varianceka2uul the
experimentalkauul exhibits small asymmetry with respect to
u→−u (not shown in Fig. 3).

In the present paper, the multiplicative noise intensityD
was taken to be independent on the velocity fluctuationsu.
The effect of variation ofD has been considered in Ref.[13]
with the qualitative result that it does not provide the specific
change in shape ofPsauud observed in experiments. How-
ever, a weak dependence ofD on u cannot be ruled out.

In summary, the presented 1D LDN type stochastic toy
model with the velocity-dependent additive noise intensity
and cross correlation parameter is shown to capture the main
features of the observed conditional and unconditional La-
grangian acceleration statistics to a good accuracy except for
the discrepancy in the conditional mean acceleration which
can be attributed to certain coupling of the acceleration to
large scales of the studied flow.

The main result is of course not only good sample fits
which are important to test the performance of the model but

FIG. 6. Double-linear plot of the central part of the curves of
Fig. 5. Same notation as in Fig. 5.

FIG. 7. Contribution to the kurtosisa4Psad. Same notation as in
Fig. 5.
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also certain advance in understanding of the mechanism of
Lagrangian intermittency provided by the dynamical Laval-
Dubrulle-Nazarenko approach to small-scale turbulence.

The central point is that the LDN toy model has a strong
deductive support from the Navier-Stokes turbulence. The
obtained exact analytic result for the conditional acceleration
distribution and the use of recent high-precision Lagrangian
experimental data on conditional and unconditional accelera-
tion statistics provide a detailed analysis of the mechanism
within the adopted framework. Effects of large time scales
(nonlocality) and turbulent viscosity(nonlinearity) have been
found of much importance in Lagrangian acceleration
steady-state statistics. The detailed study of conditional ac-
celeration statistics have revealed a specific model structure
of the external large-scale dynamics and nonlocal interscale
coupling for homogeneous high-Reynolds-number flows.
The additive noise associated to the downscale energy trans-
fer mechanism encodes the main contribution to the velocity
dependence of the acceleration statistics. The cross correla-
tion between the model additive and multiplicative noises
associated to a correlation between stretching and vorticity
naturally provides a skewness of distributions and a nonzero
mean. The weakness of this correlation is a theoretical re-
quirement that meets the Lagrangian and Eulerian experi-
ments and DNS of homogeneous isotropic turbulence. The
observed conditional mean acceleration is mainly related to

the flow anisotropy. The cross correlation is related to the
four-fifths Kolmogorov law but the effect of skewness is
negligibly small as the result of relatively large intensity of
the additive noise, which tends to symmetrize acceleration
distributions. This is a dynamical evidence implied by the
model rather than a direct consequence ofa priori assump-
tion on isotropy in the spirit of the Kolmogorov 1941 theory.
The use of exponential dependence of certain noise param-
eters on statistically independent Gaussian distributed La-
grangian velocity fluctuations has been found appropriate to
cover different experimental data on conditional statistics
and to transfer from the conditional to unconditional accel-
eration distribution both exhibiting a strong Lagrangian in-
termittency of the flow. Such a dependence is also compat-
ible with the log-normal statistics assumed by the
Kolmogorov 1962 theory. The Gaussian white-in-time mul-
tiplicative noise and long-time correlated intensity of the ad-
ditive noise were both found to make an essential contribu-
tion to intermittent bursts.

ACKNOWLEDGMENTS

The author is grateful to A. M. Reynolds for valuable
comments on issues related to the present formalism and for
sending his work, and to M. I. Mazhitov for stimulating dis-
cussions.

[1] A. La Portaet al., Nature(London) 409, 1017 (2001); G. A.
Voth et al., J. Fluid Mech. 469, 121 (2002); e-print physics/
0110027.

[2] A. M. Crawford, N. Mordant, E. Bodenschatz, and A. M. Rey-
nolds, e-print physics/0212080.

[3] N. Mordant, A. M. Crawford, and E. Bodenschatz, physics/
0303003.

[4] A. K. Aringazin and M. I. Mazhitov, Physica A325, 409
(2003); e-print cond-mat/0204359.

[5] C. Beck and E. G. D. Cohen, Physica A322, 267 (2003);
e-print cond-mat/0205097.

[6] C. Beck, Phys. Rev. Lett.87, 180601(2001); e-print cond-
mat/0212566; e-print cond-mat/0312134 .

[7] B. L. Sawford, Phys. Fluids A3, 1577 (1991); S. B. Pope,
Phys. Fluids14, 2360 (2002); G. Wilk and Z. Wlodarczyk,
Phys. Rev. Lett.84, 2770 (2000); C. Beck, Physica A277,
115 (2000); Phys. Lett. A 287, 240 (2001); Europhys. Lett.
57, 329 (2002).

[8] A. M. Reynolds, Phys. Fluids15, L1 (2003).
[9] A. M. Reynolds, Phys. Rev. Lett.91, 084503(2003).

[10] A. K. Aringazin and M. I. Mazhitov, e-print cond-mat/
0212462.

[11] A. K. Aringazin and M. I. Mazhitov, e-print cond-mat/
0301040.

[12] A. K. Aringazin and M. I. Mazhitov, Phys. Lett. A313, 284
(2003); e-print cond-mat/0301245.

[13] A. K. Aringazin and M. I. Mazhitov, Phys. Rev. E69, 026305
(2004); e-print cond-mat/0305186.

[14] T. Gotoh and R. H. Kraichnan, e-print nlin.CD/0305040.
[15] D. H. Zanette and M. A. Montemurro, Phys. Lett. A324, 383

(2004).
[16] A. K. Aringazin, e-print cond-mat/0305459.
[17] A. K. Aringazin, e-print cond-mat/0306022.
[18] A. K. Aringazin and M. I. Mazhitov, in Proceedings of the 21st

International Congress of Theoretical and Applied Mechanics,
Warsaw, 2004(to be published), e-print cond-mat/0311098.

[19] J.-P. Laval, B. Dubrulle, and S. Nazarenko, Phys. Fluids13,
1995 (2001); e-print physics/0101036.

[20] J.-P. Lavalet al., Phys. Fluids15, 1327(2003).
[21] N. Mordantet al., Phys. Rev. Lett.89, 254502(2002); e-print

physics/0206013.
[22] L. Chevillard, S. G. Roux, E. Leveque, N. Mordant, J.-F. Pin-

ton, and A. Arneodo, Phys. Rev. Lett.91, 214502 (2003);
e-print cond-mat/0310105.

[23] B. Dubrulle, J.-P. Laval, S. Nazarenko, and O. Zaboronski,
e-print physics/0304035.

[24] N. Mordant, P. Metz, O. Michel, and J.-F. Pinton, Phys. Rev.
Lett. 87, 214501(2001); e-print physics/0103084.

[25] A. M. Reynolds, Physica A340, 298 (2004).
[26] B. L. Sawford, P. K. Yeung, M. S. Borgas, P. Vedula, A. La

Porta, A. M. Crawford, and E. Bodenschatz, Phys. Fluids15,
3478 (2003).

[27] L. Biferale, G. Boffetta, A. Celani, A. Lanotte, and F. Toschi,
e-print nlin.CD/0402032.

[28] L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte,
and F. Toschi, e-print nlin.CD/0403020.

A. K. ARINGAZIN PHYSICAL REVIEW E 70, 036301(2004)

036301-8


